

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ)

филиала ОАО «УК «Кузбассразрезуголь» – «Талдинский угольный разрез»

Внесена в Государственный реестр средств измерений Регистрационный № Д0949-09

Изготовлена ЗАО «Энергопромышленная компания» (г. Екатеринбург) для коммерческого учета электроэнергии на объектах филиала ОАО «УК «Кузбассразрезуголь» – «Талдинский угольный разрез» по проектной документации ЗАО «Энергопромышленная компания», согласованной с ОАО «АТС», заводской номер ЭПК110/06-1.006.

НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) филиала ОАО «УК «Кузбассразрезуголь» — «Талдинский угольный разрез» (далее АИИС КУЭ) предназначена для измерения активной и реактивной электроэнергии, потребленной за установленные интервалы времени отдельными технологическими объектами филиала ОАО «УК «Кузбассразрезуголь» — «Талдинский угольный разрез» сбора, обработки, хранения и передачи полученной информации. Выходные данные системы могут быть использованы для коммерческих расчетов.

АИИС КУЭ решает следующие задачи:

- измерение 30-минутных приращений активной и реактивной электроэнергии;
- формирование служебной информации о состоянии средств измерений (журналы событий);
- периодический (1 раз в сутки) и /или по запросу автоматический сбор привязанных к единому календарному времени результатов измерений и служебной информации;
- хранение результатов измерений и служебной информации в специализированной базе данных, отвечающей требованию повышенной защищенности от потери информации (резервирование баз данных) и от несанкционированного доступа;
- передача в организации—участники оптового рынка электроэнергии результатов измерений;
- предоставление по запросу контрольного доступа к результатам измерений и служебной информации со стороны серверов организаций участников оптового рынка электроэнергии;
- обеспечение защиты оборудования, программного обеспечения и результатов измерений от несанкционированного доступа на физическом и программном уровне (установка паролей и т.п.);
- диагностика и мониторинг функционирования технических и программных средств АИИС КУЭ;
- конфигурирование и настройка параметров АИИС КУЭ;
- ведение системы единого времени в АИИС КУЭ (коррекция времени).

ОПИСАНИЕ

АИИС КУЭ представляет собой многоуровневую систему с централизованным управлением и распределенной функцией измерений.

АИИС КУЭ включает в себя следующие уровни:

1-й уровень — измерительно-информационный комплекс (ИИК) включает в себя измерительные трансформаторы тока (ТТ) классов точности 0,5 по ГОСТ 7746, измерительные трансформаторы напряжения (ТН) класса точности 0,5 по ГОСТ 1983, счётчики активной и реактивной электроэнергии A1800 класса точности 0,5S по ГОСТ 30206 для активной электроэнергии, 1,0 по ГОСТ 26035 для реактивной электроэнергии, установленные на объектах, указанных в таблице 1 (22 точки измерений).

2-й уровень — информационно-вычислительный комплекс электроустановки (ИВКЭ), включающий в себя устройства сбора и передачи данных (УСПД) RTU-325L, устройства синхронизации системного времени УССВ-35HVS и каналообразующую аппаратуру.

3-й уровень – информационно-вычислительный комплекс (ИВК), включающий в себя сервер АИИС КУЭ, автоматизированные рабочие места персонала (АРМ) и программное обеспечение (ПО).

Первичные фазные напряжения трансформируются токи И измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по вторичным измерительным цепям поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной и полной мощности, которые усредняются за период 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мощности.

Электрическая энергия, как интеграл по времени от средней за период 0,02 с мощности, вычисляется для интервалов времени 30 мин.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение мощности на интервале времени усреднения 30 мин.

Цифровой сигнал с выходов счетчиков по проводным линиям связи поступает на входы УСПД, где осуществляется хранение измерительной информации, ее накопление и передача накопленных данных по проводным линиям связи на третий уровень системы (сервер АИИС КУЭ).

На верхнем — третьем уровне системы выполняется дальнейшая обработка измерительной информации, в частности, вычисление значений электроэнергии и мощности с учетом коэффициентов трансформации ТТ и ТН, хранение измерительной информации, оформление справочных и отчетных документов, а также передача накопленных данных в информационные системы организаций—участников оптового рынка электроэнергии. Передача информации организациям—участникам оптового рынка электроэнергии осуществляется по выделенному каналу передачи данных через интернет-провайдера.

АИИС КУЭ оснащена системой обеспечения единого времени (СОЕВ), состоящей из устройств синхронизации системного времени (УССВ) на базе GPS-приемника, внутренних часов УСПД, счетчиков и сервера АИИС КУЭ. Время УСПД синхронизировано с временем УССВ, погрешность синхронизации не более ±2 с, сличение производится один раз в час. Сличение времени сервера АИИС КУЭ с временем УСПД осуществляется один раз в сутки, и корректировка времени выполняется при расхождении времени сервера и УСПД ±2 с. Сличение времени счетчиков А1800 со временем УСПД RTU -325L осуществляется один раз в сутки, корректировка времени счетчиков происходит при расхождении со временем УСПД ±2 с. Погрешность системного времени не превышает ±5 с.

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Таблица 1. Метрологические характеристики ИК

Номер точки измерений и наименование объекта			Вид	Метрологические характеристики ИК				
		TT	ТН	Счетчик	успд	электро- энергии	Основная погреш- ность, %	Погрешность в рабочих условиях, %
1	ПС 110кВ «Талдинская» ВЛ 35кВ У-37	ТФ3М-35 300/5 Кл. т. 0,5 Зав. № 33474 Зав. № 33484	ЗНОМ-35 35000/100 Кл. т. 0,5 Зав. № 1121685 Зав. № 1121720 Зав. № 1313689	A1805RL-P4GB- DW-4 Кл. т. 0,5S/1,0 Зав. № 1162865				
2	ПС 110кВ «Талдинская» ВЛ 35кВ У-38	ТФЗМ-35 300/5 Кл. т. 0,5 Зав. № 47683 Зав. № 47933	НОМ-35 35000/100 Кл. т. 0,5 Зав. № 1209524 Зав. № 1212976 Зав. № 1212575	A1805RL-P4GB- DW-4 Кл. т. 0,5S/1,0 Зав. № 1162870				
3	ПС 110кВ «Талдинская» ЛЭП 10кВ Фидер 10-13 (яч.13)	ТПЛ-10 400/5 Кл. т. 0,5 Зав. № 0276 Зав. № 1721	НАМИТ-10 10000/100 Кл. т. 0,5 Зав. № 850	A1805RL-P4GB- DW-3 Кл. т. 0,5S/1,0 Зав. № 1163121				
4	ПС 110кВ «Талдинская» ЛЭП 10кВ Фидер 10-14 (яч.12)	ТПЛМ-10 300/5 Кл. т. 0,5 Зав. № 48724 Зав. № 01553	НАМИ-10 10000/100 Кл. т. 0,5 Зав. № 849	A1805RL-P4GB- DW-3 Кл. т. 0,5S/1,0 Зав. № 1163173	RTU-325L 3aв.№ 002489			
5	ПС 110кВ «Талдинская» ЛЭП 10кВ Фидер 10-17 (яч.17)	ТПОЛ-10 600/5 Кл. т. 0,5 Зав. № 386 Зав. № 081	НАМИТ-10 10000/100	A1805RL-P4GB- DW-3 Кл. т. 0,5S/1,0 Зав. № 1163302	002.00	Активная Реактивная	± 1,2 ± 2,8	± 3,3 ± 5,3
6	ПС 110кВ «Талдинская» ЛЭП 10кВ Фидер 10-19 (яч.19)	ТПОЛ-10 600/5 Кл. т. 0,5 Зав. № 382 Зав. № 3226	Кл. т. 0,5 Зав. № 850	A1805RL-P4GB- DW-3 Кл. т. 0,5S/1,0 Зав. № 1163277				
7	ПС 110кВ «Талдинская» ЛЭП 10кВ Фидер 10-20 (яч.20)	ТПЛ-10 100/5 Кл. т. 0,5 Зав. № 6032 Зав. № 3180	НАМИ-10 10000/100 Кл. т. 0,5 Зав. № 849	A1805RL-P4GB- DW-3 Кл. т. 0,5S/1,0 Зав. № 1163269				
8	ПС 110кВ «Талдинская» ЛЭП 10кВ Фидер 10-22 (яч.22)	ТПЛ-10 100/5 Кл. т. 0,5 Зав. № 1638 Зав. № 1070		A1805RL-P4GB- DW-3 Кл. т. 0,5S/1,0 Зав. № 1163147				
9	ПС ЦРП «Талдинская» Фидер 10кВ №1	ТПЛ-10 200/5 Кл. т. 0,5 Зав. № 76216 Зав. № 77531	3НОЛ.06-10 10000/100 Кл. т. 0,5 Зав. № 1921 Зав. № 7956 Зав. № 7955	A1805RL-P4GB- DW-3 Кл. т. 0,5S/1,0 Зав. № 1163085	RTU-325L 3aв.№ 002487			

Продолжение таблицы 1

	Номер точки измерений		Вид	Метрологические характеристики ИК				
И	наименование объекта	TT	TH	Счетчик	успд	электро- энергии	Основная погреш- ность, %	Погрешность в рабочих условиях, %
10	ПС ЦРП «Талдинская» Фидер 10кВ №2	ТПЛ-10 150/5 Кл. т. 0,5 Зав. № 74906 Зав. № 75366	НТМИ-10-66 10000/100 Кл. т. 0,5 Зав. № 5175	A1805RL-P4GB- DW-3 Кл. т. 0,5S/1,0 Зав. № 1162951				
11	ПС ЦРП «Талдинская» Фидер 10кВ №3	ТПЛ-10 200/5 Кл. т. 0,5 Зав. № 2892 Зав. № 78584	200/5 Сл. т. 0,5 в. № 2892					
12	ПС ЦРП «Талдинская» Фидер 10кВ №4	ТПЛ-10 200/5 Кл. т. 0,5 Зав. № 78742 Зав. № 78754	НТМИ-10-66 10000/100 Кл. т. 0,5 Зав. № 5175	A1805RL-P4GB- DW-3 Кл. т. 0,5S/1,0 Зав. № 1163298				
13	ПС ЦРП «Талдинская» Фидер 10кВ №5	ТПЛ-10 200/5 Кл. т. 0,5 Зав. № 78438 Зав. № 79190	ЗНОЛ.06-10 10000/100 Кл. т. 0,5	A1805RL-P4GB- DW-3 Кл. т. 0,5S/1,0 Зав. № 1163163				
14	ПС ЦРП «Талдинская» Фидер 10кВ №7	ТПЛ-10 100/5 Кл. т. 0,5 Зав. № 77413 Зав. № 79486	3aв. № 1921 Зав. № 7956 Зав. № 7955	A1805RL-P4GB- DW-3 Кл. т. 0,5S/1,0 Зав. № 1163216	RTU-325L 3aв.№ 002487	Активная	± 1,2 ± 2,8	± 3,3 ± 5,3
15	ПС ЦРП «Талдинская» Фидер 10кВ №8	ТПЛ-10 200/5 Кл. т. 0,5 Зав. № 78231 Зав. № 79232	НТМИ-10-66 10000/100 Кл. т. 0,5 Зав. № 5175	A1805RL-P4GB- DW-3 Кл. т. 0,5S/1,0 Зав. № 1163195				
16	ПС ЦРП «Талдинская» Фидер 10кВ №10	ТПЛ-10 200/5 Кл. т. 0,5 Зав. № 79228 Зав. № 78667		A1805RL-P4GB- DW-3 Кл. т. 0,5S/1,0 Зав. № 1162983				
17	ПС ЦРП «Талдинская» Фидер 6кВ №12	ТПЛ-10 150/5 Кл. т. 0,5 Зав. № 74901 Зав. № 75679	3НОЛ.06-6 6000/100 Кл. т. 0,5 Зав. № 2180 Зав. № 2594 Зав. № 2596	A1805RL-P4GB- DW-3 Кл. т. 0,5S/1,0 Зав. № 1163068				
18	ПС 35кВ «Восточная» Ввод 1 СШ 6кВ	ТОЛ-10 800/5 Кл. т. 0,5 Зав. № 13693 Зав. № 12567	3HOЛ.06-6 6000/100 Кл. т. 0,5 Зав. № 7500 Зав. № 5009 Зав. № 12898	A1805RL-P4GB- DW-3 Кл. т. 0,5S/1,0 Зав. № 1163001				

Окончание таблицы 1

Номер точки измерений и наименование объекта		Состав измерительного канала				Вид элек-	Метрологические ха- рактеристики ИК	
		TT	ТН	Счетчик	УСПД	троэнергии	Основная погрешность, %	Погрешность в рабочих условиях, %
19	ПС 35кВ «Восточная» Ввод 2 СШ 6кВ	ТОЛ-10 800/5 Кл. т. 0,5 Зав. № 12585 Зав. № 12524	3НОЛ.06-6 6000/100 Кл. т. 0,5 Зав. № 8420 Зав. № 8536 Зав. № 8145	A1805RL-P4GB- DW-3 Кл. т. 0,5S/1,0 Зав. № 1163297	RTU-325L 3aв.№ 002487			
20	ПС 35кВ «Центральная» Ввод 1 СШ 6кВ	ТОЛ-10 800/5 Кл. т. 0,5 Зав. № 18704 Зав. № 31007	3HOЛ.06-6 6000/100 Кл. т. 0,5 Зав. № 6232 Зав. № 6516 Зав. № 6307	A1805RL-P4GB- DW-3 Кл. т. 0,5S/1,0 Зав. № 1163131	RTU-325L 3aв.№ 002488	Активная	± 1,2	± 3,3
21	ПС «Гидроме- ханизация» Фидер 6кВ №24 (яч.6)	ТОЛ-10 600/5 Кл. т. 0,5 Зав. № 1525 Зав. № 1524	3HOЛ.06-6 6000/100 Кл. т. 0,5 Зав. № 12376 Зав. № 10588 Зав. № 11633	A1805RL-P4GB- DW-3 Кл. т. 0,5S/1,0 Зав. № 1163059	RTU-325L	Реактивная	± 2,8	± 5,3
22	ПС «Гидроме- ханизация» Фидер 10кВ №46 (яч.7)	ТОЛ-10 400/5 Кл. т. 0,5 Зав. № 5042 Зав. № 46912	3HOЛ.06-10 10000/100 Кл. т. 0,5 Зав. № 1084 Зав. № 10750 Зав. № 12551	A1805RL-P4GB- DW-3 Кл. т. 0,5S/1,0 Зав. № 1163071	3ав.№ 002487			

Примечания:

- 1. Характеристики погрешности ИК даны для измерения электроэнергии и средней мощности (получасовая);
- 2. В качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности 0,95;
- 3. Нормальные условия:
 - параметры сети: напряжение $(0.98 \div 1.02)$ U_{ном}; ток $(1 \div 1.2)$ I_{ном}, $\cos \varphi = 0.9$ инд.;
 - температура окружающей среды (20 \pm 5) °C.
- 4. Рабочие условия:
 - параметры сети: напряжение $(0.9 \div 1.1)$ U_{ном}; ток $(0.05 \div 1.2)$ I_{ном}; соѕф от 0.5 инд до 0.8 емк;
 - допускаемая температура окружающей среды для измерительных трансформаторов от минус 40 до + 70 °C, для счетчиков от минус 20 до +55 °C; для УСПД от минус 10 до +50 °C и сервера от + 15 до + 35 °C;
- 5. Погрешность в рабочих условиях указана для $\cos \varphi = 0.8$ инд; температура окружающего воздуха в месте расположения счетчиков электроэнергии от 0 до 35 °C;
- 6. Трансформаторы тока по ГОСТ 7746, трансформаторы напряжения по ГОСТ 1983, счетчики электроэнергии по ГОСТ Р 52323 в режиме измерения активной электроэнергии и ГОСТ 26035 в режиме измерения реактивной электроэнергии;
- 7. Допускается замена измерительных трансформаторов и счетчиков на аналогичные (см. п. 6 Примечаний) утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в таблице 1. Допускается замена УСПД на однотипный утвержденного типа.

Надежность применяемых в системе компонентов:

- счетчик Альфа 1800 среднее время наработки на отказ не менее T = 120000 ч, среднее время восстановления работоспособности tв = 2 ч;
- УСПД RTU-325L- среднее время наработки на отказ не менее T = 40000 ч, среднее время восстановления работоспособности tв = 24 ч;
- сервер среднее время наработки на отказ не менее T = 80000 ч, среднее время восстановления работоспособности t = 1 ч.

Надежность системных решений:

- резервирование каналов связи: информация о результатах измерений может передаваться организациям—участникам оптового рынка электроэнергии с помощью электронной почты и сотовой связи;

В журналах событий фиксируются факты:

- журнал счётчика:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике;
- журнал УСПД:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике и УСПД;
 - пропадание и восстановление связи со счетчиком;
 - выключение и включение УСПД;

Защищённость применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
 - электросчётчика;
 - испытательной коробки;
 - УСПД;
 - сервера;
- защита на программном уровне информации при хранении, передаче, параметрировании:
 - электросчетчика,
 - УСПД,
 - сервера.

Возможность коррекции времени в:

- электросчетчиках (функция автоматизирована);
- УСПД (функция автоматизирована);
- ИВК (функция автоматизирована).

Возможность сбора информации:

- о состоянии средств измерений (функция автоматизирована);
- о результатах измерений (функция автоматизирована).

Цикличность:

- измерений 30 мин (функция автоматизирована);
- один раз в сутки (функция автоматизирована).

Глубина хранения информации:

- электросчетчик тридцатиминутный профиль нагрузки в двух направлениях не менее 180 суток; при отключении питания не менее 10 лет;
- УСПД суточные данные о тридцатиминутных приращениях электропотребления по каждому каналу и электропотребление за месяц по каждому каналу - не менее 35 суток; при отключении питания - не менее 3 лет;

ИВК - хранение результатов измерений и информации состояний средств измерений - за весь срок эксплуатации системы.

ЗНАК УТВЕРЖДЕНИЯ ТИПА

Знак утверждения типа наносится на титульные листы эксплуатационной документации на систему автоматизированную информационно-измерительную коммерческого учета электроэнергии (АИИС КУЭ) филиала ОАО «УК «Кузбассразрезуголь» – «Талдинский угольный разрез».

КОМПЛЕКТНОСТЬ

Комплектность системы автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) филиала ОАО «УК «Кузбассразрезуголь» – «Талдинский угольный разрез» определяется проектной документацией на систему.

В комплект поставки входит техническая документация на систему и на комплектующие средства измерений.

ПОВЕРКА

Поверка проводится в соответствии с документом «ГСИ. Система автоматизированная информационно-измерительная коммерческого учета электрической энергии (АИИС КУЭ) филиала ОАО «УК «Кузбассразрезуголь» — «Талдинский угольный разрез». Методика поверки ЭПК110/06-1.006.МП», согласованным с ФГУП «ВНИИМС» в декабре 2008 г.

Средства поверки – по методикам поверки на измерительные компоненты:

- TT πο Γ OCT 8.217-2003;
- − TH по МИ 2845-2003, МИ 2925-2005 и/или по ГОСТ 8.216-88;
- Счетчики Альфа по методике поверки МП-2203-0042-2006 «Счетчики электрической энергии трехфазные многофункциональные Альфа A1800. Методика поверки».
- УСПД RTU-325L по методике поверки «Комплексы аппаратно-программных средств для учета электроэнергии на основе УСПД серии RTU-300. Методика поверки».

Приемник сигналов точного времени.

Межповерочный интервал - 4 года.

НОРМАТИВНЫЕ ДОКУМЕНТЫ

ΓΟCT 1983-2001 ΓΟCT 7746-2001 ΓΟCT P 52323-2005	«Трансформаторы напряжения. Общие технические условия». «Трансформаторы тока. Общие технические условия». «Аппаратура для измерения электрической энергии переменного
10011 32323-2003	тока. Частные требования. Часть 22. Статические счетчики активной энергии классов точности 0,2S и 0,5S».
ГОСТ 30206-94	«Статические счетчики ватт-часов активной энергии переменного тока (классы точности 0,2S и 0,5S)».
ГОСТ 26035-83	«Счетчики электрической энергии переменного тока электронные. Общие технические условия».
ГОСТ 22261-94.	Средства измерений электрических и магнитных величин. Общие технические условия.
ГОСТ Р 8.596-2002.	ГСИ. Метрологическое обеспечение измерительных систем. Основные положения.
МИ 3000-2006	«Системы автоматизированные информационно-измерительные коммерческого учета электрической энергии. Типовая методика поверки».

ЗАКЛЮЧЕНИЕ

Тип системы автоматизированной информационно-измерительной коммерческого учета электроэнергии (ЛИИС КУЭ) филиала ОЛО «УК «Кузбассразрезуголь» – «Талдинский угольный разрез» утвержден с техническими и метрологическими характеристиками, приведёнными в настоящем описании типа, метрологически обеспечен при выпуске из производства и в эксплуатации в соответствии с государственными поверочными схемами.

Изготовитель: ЗАО «Энергопромышленная компания»

Юридический адрес: 620144 г. Екатеринбург, ул. Фрунзе, 96-В.

Телефон: (343) 251-19-96, факс: (343) 251-19-85

Генеральный директор 3AO «Эпергопромышленная компания»