об утверждении типа средств измерений

Всего листов 7

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

СОГЛАСОВАНО

Руководитель ГЦИ СИ -

. директора ФГУП ВНИИОФИ

Н. П. Муравская

09 2010 г.

Системы измерений и контроля параметров волоконно-оптических линий связи NQMSfiber

Внесены в Государственный

реестр средств измерений

Регистрационный № 45355-10

Взамен №

Выпускаются в соответствии с технической документацией фирмыизготовителя «EXFO Electro-Optical Engineering, Inc.», Канада.

НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

Системы измерений и контроля параметров волоконно-оптических линий связи NQMSfiber (далее — система NQMSfiber) предназначены для автоматического обнаружения и измерений длины (расстояния) до мест неоднородности в оптическом кабеле, возникших в результате неисправности в волоконно-оптических линиях связи (ВОЛС).

Область применения: проведение контрольно-измерительных работ при эксплуатации и наладке волоконно-оптических линий связи и решение задач централизованного контроля и документирования сетевого кабельного хозяйства в разветвленных волоконно-оптических телекоммуникационных сетях.

ОПИСАНИЕ

Система NQMSfiber включает базовый блок со встроенным модулем оптического рефлектометра из серии FTB-7300E (FTB-7300E-023B, FTB-7300E-034B, FTB-7300E-234B, FTB-7300E-234B, FTB-7400E-0234B, FTB-7400E-0234B, FTB-7400E-0234B, FTB-7500E (FTB-7500E-0023B, FTB-7500E-0234B, FTB-7500E-0023B, FTB-7500E-0023B, FTB-7600E-0023B, FTB-7600E-0023B, FTB-7600E-0034B, установленным в базовый блок и персональный компьютер. Базовый блок обеспечивает измерение длины до мест неоднородностей методом обратного рассеяния в одномодовых оптических волокнах оптических кабелей. Принцип действия модуля оптического рефлектометра основан на зондировании волоконно-оптической линии последовательностью коротких оптических импульсов и измерении сигналов, отраженных от неоднородностей и сигнала об-

ратного рассеяния, т.е. сигналов френелевского отражения и релеевского рассеяния. В результате обработки этих сигналов формируется рефлектограмма зондируемого оптического волокна, показывающая распределение ослабления по его длине и индицирующая наличие стыков и обрывов. Базовый блок позволяет коммутировать входные порты в зависимости от требований пользователя и может быть выполнен в двух вариантах RTU или FG-RTU, отличающихся наличием внутреннего программного обеспечения, обеспечивающего доступ оператора к блоку FG-RTU посредствам веб-интерфейса. Система конструктивно выполнена в прямоугольном корпусе с оптическим коммутатором на 8 или 16 портов

Персональный компьютер обеспечивает отображение и сохранение результатов измерений. Основные метрологические и технические характеристики системы представлены в таблицах Приложения.

ЗНАК УТВЕРЖДЕНИЯ ТИПА

Знак утверждения типа наносится на титульный лист руководства по эксплуатации фирмы типографским способом и на корпус системы в виде наклейки.

комплектность

Наименование	Количество
Базовый блок (RTU, FG-RTU) с модулем оптического рефлектометра из серии FTB-7300E (FTB-7300E-023B, FTB-7300E-034B, FTB-7300E-234B, FTB-7300E-236B), FTB-7400E (FTB-7400E-0023B, FTB-7400E-0234B, FTB-7400E-2347B), FTB-7500E (FTB-7500E-0023B, FTB-7500E-0234B, FTB-7500E-2347B), FTB-7600E (FTB-7600E-0023B, FTB-7600E-0034B	1 (тип базового блока и модуль оптического рефлектометра по выбору Заказчика)
Персональный компьютер	1
Руководство по эксплуатации	1

ПОВЕРКА

Поверка системы осуществляется в соответствии с МИ 1907-99 Рекомендация. Государственная система обеспечения единства измерений «Рефлектометры оптические. Методика поверки»

Межповерочный интервал – 1 год.

НОРМАТИВНЫЕ И ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

ГОСТ 8.585-2005 Государственная поверочная схема для средств измерений длины и времени распространения сигнала в световоде, средней мощности, ослабления и длины волны для волоконно-оптических систем связи и передачи информации.

Техническая документация фирмы-изготовителя «EXFO Electro-Optical Engineering, Inc.», Канада.

. .

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Основные технические характеристики системы NQMSfiber, определяемые параметрами RTU - устройства удаленного доступа, включающего модули оптического рефлектометра, представлены в таблице 1. Таблица 1

рефлектометра серии и в -/ 300 к	F 1 B-/300E-025B	FTB-/300E-034B	FTB-7300E-234B	FTB-7300E-236B
Тип волокна		Одномодо	Одномодовое 9/125 мкм	
Рабочие длины волн	1310/1550±20 нм	1550±20 нм	1310/1550±20 нм	1310/1550±20 нм
		1022±10 HM	1625±10 HM	1490±10 HM
۲. -	При длительности	При длительности	При длительности	При длительности
ления (при усреднении 3 мин, по уровню	импульса 20мкс:	импульса 20мкс:	импульса 20мкс:	импульса 20мкс:
98% от максимума шумов)*	37 дБ / 35 дБ	35 дБ / 33 дБ	37 дБ / 35 дБ / 33 дБ	37дБ/35 дБ/33дБ
Мертвая зона при измерении:				
- ослабления	4 M/4,5 M	4 M/4,5 M	4 M/4.5 M /4.5 M	4 M/ 4.5 M /4.5 M
- положения неоднородности	$0.8 \mathrm{M} / 0.8 \mathrm{M}$	0,8 M/ 0,8 M	0,8 M/ 0,8 M / 0,8M	0.8 M 0.8 M /0.8 M
Длительность зондирующих импульсов		5;10, 30, 100, 275, 100	5;10, 30, 100, 275, 1000, 25000, 10000, 20000 нс	
Диапазоны измеряемых длин		01,25; 0 2	01,25; 0 2,5; 0 5; 0 10;	
		0 20; 0 40; 0 80	0 20; 0 40; 0 80; 0160; 0260; 0400 KM	M.
Пределы допускаемой абсолютной по-)'0∓	±0,03 дБ/дБ	
грешности при измерении ослабления				
Пределы допускаемой абсолютной по-		$\Delta L = \pm (0.75 +$	$\Delta L = \pm (0.75 + 1 \times 10^{-5} L + \delta), \text{ M **}$	
грешности при измерении длины (с учетом				
значения длины соединительного волокна				
6 M)				

Продолжение таблицы 1

модуля оптического рефлектометра серии FTB -7400E	FTB-7400E-0023B	FTB-7400E-0234B	FTB-7400E-2347B
Тип волокна		Одномодовое 9/125 мкм	
Рабочие длины волн	1310/1550±20 нм	1310/1550±20 нм	1310/1550±20 нм
3		1625±10 нм	1383±1 нм 1625±10 нм
Динамический диапазон измерений ослаб-	При длительности	При длительности	При длительности
ления (при усреднении 3 мин, по уровню	импульса 20мкс:	импульса 20мкс:	импульса 20мкс:
98% от максимума шумов)*	40 дБ / 39 дБ	40 дБ / 39 дБ / 39 дБ	40дБ/38 дБ/39дБ/39 дБ
Мертвая зона при измерении:			
- ослабления	4 M/ 4,5 M	4 M/4.5 M /4.5 M	4 M/4 M/4 5 M/4 5 M
- положения неоднородности	0,8 M / 0,8 M	0,8 m/ 0,8 m/0,8m	0.8 M/ 0.8 M/0 8M
Длительность зондирующих импульсов	5;10, 30, 1	5;10, 30, 100, 275, 1000, 25000, 10000, 20000 нс	
Диапазоны измеряемых длин	00	01,25; 0 2,5; 0 5; 0 10;	
	0 20; 0	0 20; 0 40; 0 80; 0160; 0260; 0400 KM	ME
Пределы допускаемой абсолютной по-		±0,03 дБ/дБ	
грешности при измерении ослабления			
Пределы допускаемой абсолютной по-	IΔ	$\Delta L = \pm (0.75 + 1 \times 10^{-5} L + \delta), M **$	
грешности при измерении длины (с учетом			
значения длины соединительного волокна			
6 M)			

.

٠;

Продолжение таблицы 1

Модификация модуля оптического	FTB-7500E-0023B	FTB-7500E-0034B	FTB-7600E-0023B	FTB-7600E-0034B
рефлектометра серий FTB-7500E, FTB-7600E				
Тип волокна		Одномодовое 9/125 мкм	9/125 мкм	
Рабочие длины волн	1310/1550±20 нм	1550±20 нм 1625±10 нм	1310/1550±20 нм	1550±20 нм 1625±10 нм
Динамический диапазон измерений ослабления (при усреднении 3 мин, по уровню 98% от максимума шумов)*	При длительности импульса 20мкс: 43 дБ / 43 дБ	При длительности импульса 20мкс: 43 дБ / 43 дБ	При длительности импульса 20мкс: 48 дБ/ 48 дБ	При длительности импульса 20мкс: 48 дБ / 46 дБ
Мертвая зона при измерении: - ослабления - положения неоднородности	4 m / 4,5 m 0,8 m / 0,8 m	4,5 m / 4,5 m 0,8 m / 0,8 m	5 M/ 5 M 1 M/ 1,5 M	5 M / 5 M 1,5 M / 1 M
Длительность зондирующих импульсов	5 нс;10нс,	5 нс;10нс, 30 нс, 100нс, 275 нс, 1000 нс, 2500 нс;10000 нс, 20000 нс	0 нс, 2500 нс;10000 нс,	20000 нс
Диапазоны измеряемых длин	01,25; 0 2,5; 0	1,25; 0 2,5; 0 5; 0 10; 0 20; 0 40; 0 80; 0 160; 0 260; 0 400 km	40; 0 80; 0160; 0.	260; 0 400 км
Пределы допускаемой абсолютной по- грешности при измерении ослабления		±0,03 дБ/дБ	Б/дБ	
Пределы допускаемой абсолютной по- грешности при измерении длины (с учетом значения длины соединительного волокна 6 м)		$\Delta L = \pm (0.75 + 1 \times 10^{-5} L + \delta), M^{**}$	10 ⁻⁵ .L+δ), м **	

* Динамический диапазон - разность (в дБ) между уровнем сигнала, рассеянного от ближнего к системе конца измеряемого оптического кабеля, и уровнем шумов, равным 98 % от максимума шумов в последней четверти установленного диапазона длин.
** L – измеряемая длина, м;

- 8 - дискретность отсчета (зависит от измеряемой длины), м.

_

, ,

Таблица 2

Электропитание осуществляется от встроенных батарей или через блок питания от сети переменного тока:	
- напряжением и частотой	220 B±22 B; 50±0,5 F _{II}
Габаритные размеры	44 mm x 427 mm x 312 mm
Macca	13 кг

Рабочие условия эксплуатации:

• относительная влажность воздуха, %...... до 95 (без конденсата)

ЗАКЛЮЧЕНИЕ

Тип «Системы измерений и контроля параметров волоконно-оптических линий связи NQMSfiber» утвержден с техническими и метрологическими характеристиками, приведенными в настоящем описании типа, метрологически обеспечен при выпуске из производства и в эксплуатации, согласно государственной поверочной схеме в соответствии с ГОСТ 8.585-2005.

Изготовитель - Фирма «EXFO Electro-Optical Engineering, Inc.», Канада 400 Godin Avenue, Quebec (Quebec) G1M 2K2 Canada.

Заявитель: ЗАО «Концепт Технологии» 142784, Московская область, Ленинский район, д. Румянцево, стр. 1 Торгово-офисный центр «Румянцево, Блок «Б», 7-ой этаж, офис 701Б.

Генеральный директор ЗАО «Концепт Технологии»

О.В. Скрипачев